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Abstract: We implement soft leptogenesis in a warped five dimensional scenario with two

branes on the orbifold boundaries coming from an S1/Z2 symmetry, and supersymmetry

broken on the IR brane. The SM hypermultiplet fields (fermions and Higgs) live in the UV

brane and we allow the vector supermultiplets corresponding to the gauge bosons and a

hypermultiplet corresponding to the right handed neutrino to live in the bulk. We assume

that there are Majorana mass terms for the right handed neutrino superfield fixed on each

brane and that there is a Yukawa term involving the right handed neutrino, the left handed

neutrino and the Higgs fixed on the UV brane. Supersymmetry is broken by a constant

“superpotential” on the IR brane, which induces an F-term for the radion hypermultiplet.

This F-term leads to a B-term for the right handed sneutrinos as well as a soft SUSY

breaking gaugino mass in the 4D theory for the zero modes. The gaugino mass naturally

induces an A-term for the right handed sneutrino, left handed sneutrino and the Higgs to

be formed through gaugino mediation with a non-trivial CP violating phase. Moreover,

we show that within the context of extra dimensions, the condition of out-of-equilibrium

decay and the phenomenological constraints on the neutrino mass are both satisfied in a

natural way, for UV Majorana masses of the order of the fundamental scale of the theory.

Thus all necessary elements for soft leptogenesis are at hand and we are able to predict a

correct value for the baryon asymmetry.
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1. Introduction

The idea of “soft leptogenesis” [1, 2] which can explain the baryon asymmetry in the uni-

verse is very attractive because of its simplicity. The soft parameters provide the source of

CP violation, not relying on flavor physics like regular leptogenesis does. The presence of

these terms allows oscillations between right handed sneutrinos and anti-sneutrinos which

induce significant CP violation in sneutrino-decay processes. In [2, 3] a study of the pa-

rameter space was done, but no compelling model was addressed which could explain the

values obtained. A study of this sort was made in [4], where gauge mediation and SUGRA

effects were used to explain the parameters. Our idea is to extend these results to super-

symmetric warped extra dimensional theories with one additional spatial extra dimension

as in RS1 [5, 6]. Working in a supersymmetric scenario grant us the opportunity to change

the size of the extra dimension without worrying about the hierarchy problem which is

solved by supersymmetry. Part of the motivation for such an extension of the RS1 scenario

comes from the point of view of string theory where naturally supersymmetry and com-

pact extra dimensions are related, even though still there hasn’t been found any connection

between this model and string theory. Furthermore, not many models of leptogenesis in

extra dimensions have been worked out in the literature [7].

In our framework, the Standard Model fermions and Higgs superfields live in what

we call the UV brane, the unwarped brane. The right handed sterile neutrino and the

gauge superfields are in the bulk of the extra dimension and the radion superfield acquires

a non-vanishing F-term on the IR brane (warped brane) which breaks supersymmetry.

In this context, the location of the fields in the fifth dimension provides a natural way to
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explain the lepton asymmetry as well as to satisfy the constraints necessary for leptogenesis

to succeed. Further constraints from neutrino masses and gravitino relic energy densities

are satisfied too. This leads to a strong predictive model which adjusts fairly well to all

constraints required for specific locations of the fields in the extra dimension. The coupling

constants and masses have natural values except for the 5D right handed neutrino mass

parameter M2 which must be some orders of magnitude smaller than the GUT scale. One

of the attractive points of this scenario is that the condition of out of equilibrium decay of

the right handed sneutrinos is automatically obtained for values of the mass parameter M1

fixed on the UV brane of the order of the GUT scale. This, in turn, leads to a neutrino

mass of the order of 10−3 eV, consistent with phenomenological constraints. As was shown

in [8], the GUT scale for our model coincides with the normal 4D GUT scale. This is

related to the fact that though bare masses can be high, the KK masses always start at

the order of the compactification scale ke−kπR; something that doesn’t happen in flat extra

dimensions.

The paper is organized as follows: in section 2 we introduce the model in 5D superspace

and we show how the F-term of the radion superfield induces a gaugino mass. We write the

Lagrangian in term of the component fields and we give an interpretation to the δ2 terms

we find. To simplify the presentation, we work in a one-generation model, discarding flavor

indices, and we calculate the 4D effective soft supersymmetry breaking terms we will be

working with. In section 3 we show where specifically CP violation comes from, calculate

the lepton asymmetry and discuss the different constraints on the model. We arrive at the

conclusions in section 4.

2. Superfield action in a warped 5D space

Let us consider a 5D theory where the extra dimension is warped. The extra dimension

which we will denote with the letter y is compactified on an orbifold S1/Z2 of radius R,

with 0 ≤ y ≤ π the angular coordinate. The metric is given by

ds2 = e−2Rσηµνdxµdxν + R2dy2 (2.1)

where σ = k|y| and 1/k is the curvature radius. This space corresponds to a slice of

AdS5. We promote R to a superfield which corresponds to the 4D chiral radion superfield

T that, together with R, it is known to contain the fifth-component of the graviphoton B5,

the fifth-component of the right handed gravitino Ψ5
R and a complex auxiliary field FT .

Higher-dimensional supersymmetric theories contain 4D supersymmetry and therefore it is

always possible to write them using N = 1 superfields. We will write T as

T = R + iB5 + θΨ5
R + θ2FT (2.2)

and we will take < B5 >=< Ψ5
R >= 0.

The five dimensional action in superspace for a hypermultiplet corresponding to the
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right handed neutrino is given by,

S5 =

∫

d5x

(∫

d4θ
1

2
(T + T †)e−(T+T †)σ(N †N + N cN c†) +

+

∫

d2θe−3TσN c

[

∂5 − (
3

2
− cνR

)Tσ′

]

N + h.c. +

+
1

2

∫

d2θe−3TσN c(−M1T )N cδ(y) + h.c. +

−1

2

∫

d2θe−3TσN c(−M2T )N cδ(y − π) + h.c. +

−
∫

d2θe−3TσλLN cHTδ(y) + h.c.

)

(2.3)

where N c is the right handed neutrino chiral N = 1 hypermultiplet which together with N

forms the 5D off-shell right handed neutrino hypermultiplet. N c is even and N odd under

S1/Z2 respectively. H is the Higgs hypermultiplet of the up-type, L is the left handed

neutrino hypermultiplet, M1 and M2 are the Majorana masses in 5D, λ is the Yukawa

constant in 5D and we parameterized the hypermultiplet mass as cσ′. In our conventions,

d5x = d4xdy. In components these fields can be written as

L = ν̃ +
√

2νθ + Fνθ
2 (2.4)

N c = ν̃R +
√

2νRθ + FNcθ2 (2.5)

H = H +
√

2hθ + FHθ2 (2.6)

N = Ñ +
√

2ψθ + FNθ2 (2.7)

The auxiliary field FT which will be responsible for breaking supersymmetry on the

y = π boundary, comes from the effective Lagrangian [9]

L4D = −6M3
5

k

∫

d4θφ†φ(1 − e−(T+T †)kπ) +

∫

d2θφ3[W0 + e−3TkπW ] + h.c. (2.8)

where W and W0 are superpotentials at the orbifold positions y = 0 and y = π, φ is the

compensator field and M2
P = M3

5 (1 − e−2kπR)/k, with MP being the 4D Planck mass.

W0 was introduced to cancel the cosmological constant in the 4D theory, and |W0|2 =

e−4kπR|W |2. This implies that SUSY breaking is heavily suppressed on the Planck brane;

therefore we can assume that FT is localized on the IR brane and its effective 4D form is

FT = e−kπR W

2πM3
5

. (2.9)

So far, we have not introduced the gauge field components. These, however, play an

essential role in the model analyzed in this article, since the soft supersymmetry breaking

parameters of the Higgs and left-handed lepton chiral fields are generated via the mech-

anism of gaugino mediation. The 5D vector superfield includes two gauginos. One of

these gauginos, which we will denote as λ1, transforms in a vector supermultiplet together

with the gauge fields while the other, λ2, forms the fermion component of a scalar su-

perfield transforming in the adjoint representation of the group. The kinetic action for
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the vector supermultiplet can be parameterized in terms of the fermion chiral superfield

W α ' λα
1 + . . ., and has the form

S5 =

∫

d5x

[

1

4g2
5

∫

d2θTW αWα + h.c. + . . .

]

(2.10)

The radion F-term breaks SUSY inducing a localized gaugino mass given by

Lsoft =
δ(y − π)e−kπRWλ1λ1

RM3
5

+ h.c. (2.11)

Redefining λi → e−2Rσλi, i = 1, 2 to absorb the spin connection term, the equations of

motion for the gauginos are given by

ieRσ σ̄µ∂µλ2 +
1

R
(∂5 +

1

2
Rσ′)λ̄1 = 0,

ieRσσ̄µ∂µλ1 −
1

R
(∂5 −

1

2
Rσ′)λ̄2 −

W

2M3
5 R

δ(y − π)λ̄1 = 0. (2.12)

We solve these equations in the bulk, ignoring boundary effects which will only play a

role when imposing boundary conditions. Looking for solutions of the form λi(x, y) =
∑

λ(n)f
(n)
i (y) and using the orthogonality condition of the modes, eq. (2.12) leads to the

second order differential equations [9]

[

1

R2
eRσ∂5(e

−Rσ∂5) − (
1

4
± 1

2
)k2

]

f
(n)
1,2 = e2Rσm2

nf
(n)
1,2 (2.13)

with solutions

f
(n)
1 (y) =

eRσ/2

Nn

[

J1

(mn

k
eRσ

)

+ b1(mn)Y1

(mn

k
eRσ

)]

(2.14)

f
(n)
2 (y) =

σ′eRσ/2

kNn

[

J0

(mn

k
eRσ

)

+ b2(mn)Y0

(mn

k
eRσ

)]

(2.15)

where bi and mn will be determined by the boundary conditions, and Nn are normalization

constants.

Taking into account the Z2 assignment, f
(n)
i must fulfill the following conditions on

the y = 0 boundary

f
(n)
2 |y=0 = 0 (2.16)

(

d

dy
+

R

2
σ′

)

f
(n)
1 |y=0 = 0 (2.17)

which imply b1(mn) = b2(mn) = −J0(mn/k)/Y0(mn/k). On the other hand, the presence

of the Majorana gaugino mass on the y = π boundary in eq. (2.12) implies

f
(n)
2 (π) =

W

4M3
5

f
(n)
1 (π) (2.18)
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These conditions yield that the following determinant should vanish

det

(

J0(xn) Y0(xn)

J0(xnekπR) − W
4M3

5

J1(xnekπR) Y0(xnekπR) − W
4M3

5

Y1(xnekπR)

)

, (2.19)

where xn = mn/k. From here we get the KK gaugino mass spectrum. Solving this equation

we find a non-zero value for the zero mode gaugino mass. In the case that η ≡ W
4M3

5

¿ 1

(small SUSY breaking) and xnekπR ¿ 1 (for the zero mode) we find

mλ1
≈ − η

πR
e−kπR (2.20)

Multiplying numerator and denominator by k, we see that under this conditions, the zero

mode gaugino mass will be much smaller than the KK mass scale, parameterized by ke−kπR.

It is important to stress again that, contrary to the standard warped extra dimension

scenarios, the hierarchy is stabilized by supersymmetry and therefore there is no need for

the KK mode masses to be close to the weak scale. In general the KK masses will be out

of the reach of the LHC. As we will show, the phenomenological properties of this model

will be similar to those of low energy supersymmetry breaking with a light gravitino.

We are interested in obtaining the effective action for the right-handed neutrinos. In

order to do that, we need to calculate the auxiliary field for N c and N. From eq. (2.3), we

obtain,

F †
Nc = −e−Rσ

R

(

[

∂5 −
(

3

2
− cνR

)

Rσ′

]

Ñ − M1Rν̃Rδ(y) + (2.21)

−M2Rν̃Rδ(y − π) − λν̃HRδ(y)

)

− 1

2R
ν̃∗

RFT (1 − 2Rσ)

F †
N =

e−Rσ

R

[

∂5 −
(

3

2
+ cνR

)

Rσ′

]

ν̃R − 1

2R
Ñ∗FT (1 − 2Rσ) (2.22)

Replacing these F-terms in eq. (2.3) and integrating over superspace we get the fol-

lowing 5D Lagrangian for ν̃R and Ñ

L5D =
√−g(−|∂M Ñ |2 − |∂M ν̃R|2 − m2

N ÑÑ∗ − m2
Nc ν̃Rν̃∗

R +

+
eRσ

2R2
ÑFT (1 − 2Rσ)(∂5ν̃R − (3/2 + cνR

)σ′Rν̃R) + h.c +

− eRσ

2R2
2(3/2 − cνR

)σ′RFT ν̃RÑ + h.c. +

− eRσ

2R2
FT ν̃R(1 + 4Rσ)(∂5Ñ − (3/2 − cνR

)σ′RÑ) + h.c. +

−M2
1 ν̃Rν̃∗

Rδ(y)2 − λλ∗ν̃ν̃∗HH∗δ(y)2 − M1ν̃
∗
Rλν̃Hδ(y)2 + h.c +

+
e2Rσ

2R
(2Rσ − 2)FT FT σ(ν̃Rν̃∗

R + ÑÑ∗) − M2
2 ν̃Rν̃∗

Rδ(y − π)2 +

+
ν̃RM1

R
(∂5Ñ

∗ − (3/2 − cνR
)σ′RÑ∗)δ(y) + h.c. +

+
ν̃RM2

R
(∂5Ñ

∗ − (3/2 − cνR
)σ′RÑ∗)δ(y − π) + h.c. +
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+
λν̃H

R
(∂5Ñ

∗ − (3/2 − cνR
)σ′RÑ∗)δ(y) + h.c. +

+
M2

2
σeσRFT ν̃Rν̃Rδ(y − π) + h.c.), (2.23)

where m2
N,Nc = (c2

νR
± cνR

− 15/4)k2. The delta-squared terms are similar to those found

by Horava in [10]. They are related to the bulk-boundary coupling, and as pointed out

in [11] they are necessary in order to have SUSY conserved. They can also be thought as

parameterizing the effects induced by the sum over the KK towers. Let us show this in the

explicit example of the relation between neutrino and sneutrino masses.

The Majorana mass term for the right handed neutrino localized on the UV brane is

given by
1

2
M1νR(x, 0)νR(x, 0) = M1

∑

n,m

f
(n)
R (0)f

(n)
R (0)ν

(n)
R (x)ν

(m)
R (x) (2.24)

which can be interpreted in matrix form in the basis of (ν
(0)
R (x), ν

(1)
R (x), ν

(2)
R (x), . . .) as

S =











f
(1)
R (0)f

(1)
R (0) f

(1)
R (0)f

(2)
R (0) f

(1)
R (0)f

(3)
R (0) . . .

f
(2)
R (0)f

(1)
R (0) f

(2)
R (0)f

(2)
R (0) f

(2)
R (0)f

(3)
R (0) . . .

f
(3)
R (0)f

(1)
R (0) f

(3)
R (0)f

(2)
R (0) f

(3)
R (0)f

(3)
R (0) . . .

...
...

...
. . .











(2.25)

The same KK expansion can be done for the right handed sneutrino with functions g
(n)
R (y).

Since the g
(n)
R form a complete orthonormal system we can expand the δ(0) in this basis as

δ(0) =
∑

k

g
(k)
R (0)g

(k)
R (0) (2.26)

Therefore if we look at the SUSY mass term

∫

dy
√−g(M2

1 ν̃Rν̃∗
Rδ(y)2) =

∫

dy[
√−g(M2

1 ν̃Rν̃∗
Rδ(y))] × δ(y) (2.27)

After proper normalization, it will take the form

M2
1

∑

n,m

g
(n)
R (0)g

(m)
R (0)δ(0)ν̃

(n)
R (x)ν̃

(m)∗
R (x) = (2.28)

= M2
1

∑

n,m,k

g
(n)
R (0)g

(k)
R (0)g

(k)
R (0)g

(m)
R (0)ν̃

(n)
R (x)ν̃

(m)∗
R (x)

which can be interpreted in the basis (ν̃
(0)
R (x), ν̃

(1)
R (x), ν̃

(2)
R (x), . . .) as M2

1 S′ × S′ with S’

the mass matrix formed with the g(n)(0) functions. We remind the reader that in AdS5

background fields in the same supermultiplet must have different masses which will lead

them to have different dependence on the fifth dimension. However, in the case of flat

extra dimensions g
(n)
R (y) = f

(n)
R (y) and we see then that this leads to the conventional

supersymmetric relations between the neutrino and sneutrino mass matrices.

– 6 –
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2.1 Sneutrino bilinear and trilinear SUSY breaking terms

The mechanism of soft leptogenesis requires specific relations between the soft supersymme-

try breaking bilinear and trilinear terms of the sneutrinos. From the Lagrangian, eq. (2.23),

we see that nor A-term, neither B-term can be formed on the UV brane at tree-level. This

has to do with the fact that SUSY breaking is localized on the IR brane and that the B-

term is proportional to σ. However, since the right-handed neutrino superfield propagates

into the extra dimension, a B-term will be naturally induced on the IR brane (we remind

the reader that the terms proportional to FT are localized on the IR brane).

For the zero modes, eq. (2.23) reduces to

L5D,0 =
√−g(−|∂M Ñ |2 − |∂M ν̃R|2 − M2

1 ν̃Rν̃∗
Rδ(y)2 +

−λλ∗ν̃ν̃∗HH∗δ(y)2 − M1ν̃
∗
Rλν̃Hδ(y)2 + h.c. +

+
e2Rσ

2R
(2Rσ − 2)FT FT σ(ν̃Rν̃∗

R + ÑÑ∗) − M2
2 ν̃Rν̃∗

Rδ(y − π)2 +

+
1

2
M2σeσRFT ν̃Rν̃Rδ(y − π) + h.c.) (2.29)

We know that the right-handed massless zero mode for ν̃R satisfies the following equa-

tion

[∂5 − (3/2 + cνR
)Tσ′]g(0) = 0 (2.30)

whose solution is g(0) = e(3/2+cνR
)Tσ/N0, where N0 is a normalization constant. Analyzing

the form of the kinetic term in eq. (2.29), we can obtain the normalization factor for the

zero mode. Canonically normalizing the right handed sneutrino field, we find that

1

N2
0

=
2(1/2 + cνR

)k

e2(1/2+cνR
)kπR − 1

. (2.31)

Similarly, the normalization condition for the zero mode fields fixed on the UV brane comes

from
∫ π

0

1

N2
0

δ(y)Rdy = 1 (2.32)

Therefore N0 =
√

R.

In order to derive the form of the A and B parameters of the sneutrino, we need

to determine the size of the effective Yukawa and Majorana masses for the right-handed

neutrino field. If we look at the fermionic interactions for the superfields, we obtain the

following term

LYukawa ' λR(ννRH + νRhν̃ + hνν̃R) + h.c. (2.33)

After canonically normalizing, this term takes the form

LYukawa ' λ
√

k(1 + 2cνR
)

√

e2(1/2+cν
R

)kπR − 1
(ννRH + νRhν̃ + hνν̃R) + h.c. (2.34)

Therefore, we identify the 4D Yukawa coupling constant

λ4 =
λ
√

k(1 + 2cνR
)

√

e2(1/2+cνR
)kπR − 1

(2.35)
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We can do the same in the case of the Majorana mass. Then we get for the fermionic part

in the case of IR or UV Majorana term

LM ' 1

2
M2e

2cν
R

kπRνRνRRδ(y − π) +
1

2
M1RνRνRδ(y). (2.36)

Canonically normalizing these terms, we obtain the values of the localized Majorana masses

for the right-handed neutrino,

M4,IR = 2
(1/2 + cνR

)kRe2cνR
kπR

e2(1/2+cνR
)kπR − 1

M2, (2.37)

M4,UV = 2
(1/2 + cνR

)kR

e2(1/2+cν
R

)kπR − 1
M1. (2.38)

We see that provided the right-handed neutrino zero mode is localized towards the IR

brane, cνR
> −1/2, as we will assume in our model, the localized Majorana mass in the

ultraviolet will be much larger than the one in the infrared, M4,UV À M4,IR. Thus the

effective Majorana mass of the right-handed neutrino, M4, is dominated by the ultraviolet

term, M4 ' M4,UV .

We are now prepared to compute the bilinear and trilinear soft supersymmetry break-

ing terms in the effective four dimensional theory. Replacing the zero-mode for Ñ c in

eq. (2.23), integrating on the fifth dimension and canonically normalizing we get the fol-

lowing 4D B-term (we define the bilinear term in the soft Lagrangian as −Lsoft,4D =

. . . + 1
2B4M4ν̃R(x)ν̃R(x) + . . ., where M4 is the Majorana mass of the right handed neutri-

nos),

B4 = kπFT
M4,IR

M4,UV
. (2.39)

On the other hand, in the presence of phases in the gaugino mass terms, massive

gauginos will naturally induce an A4-term with a CP violating phase. We define the A-

term as −Lsoft,4D = . . . + A4λ4ν̃Rν̃H + . . .. This terms comes from a 1-loop triangle

diagram (see figure 1) involving ν̃, ν̃R and H [12 – 15].

From the diagram, figure 1, we see that the only possible meaningful contributions can

come from the gaugino zero mode and the right handed sneutrino zero mode, since ν̃ and

H live in the UV brane. Concentrating on the dominant wino contribution, we get

A4λ4 = 4λ4g
2
4C2(N)

∫

d4p

(2π)4
1

p2

mW̃

p2 + m2
W̃

(2.40)

where g2
4 = g2

5/R. Integrating up to the compactification scale ke−kπR (the scale at which

SUSY breaking is transmitted) we get for A4 ,

A4 ' 3α2
mW̃ log (ke−kπR/mW̃ )

2π
. (2.41)

where α2 = g4,2/(4π) ≈ 0.03. Although the proper result for A4 can only be obtained after

resummation, due to the presence of the weak gauge coupling and the relatively low scale
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H ν~

νh

~ν
R

W W
~~

Figure 1: Feynman diagram for A4 generation.

for ke−kπR, the above result provides a very good approximation for the Wino contribution

to A4. Also, since the beta function of α2 in the MSSM is small, the value of α2 may be

approximately replaced by its weak scale value.

The mass spectrum of squarks and sleptons can be obtained through gaugino mediation

as is done in [12] since the F-term radion contributions to these masses will be smaller.

3. Results

Now we have all the necessary ingredients to do soft leptogenesis in warped extra dimen-

sions. We will constraint our model by obtaining reasonable values for the lepton asymme-

try εL, the left handed neutrino mass through the see saw mechanism mν , requiring that

the necessary conditions for leptogenesis are satisfied and that the lepton asymmetry is not

erased because of the KK modes.

As was mentioned in the introduction, we will consider a single generation of right

handed neutrinos, since the effect survives even in this limiting case. We will drop all

flavor indices. Under these conditions, a CP-violating phase is still present. We can see

that in the following way. Let us write the important terms for CP violation in the 4D

Lagrangian,

−∆L4D = . . . + λ4(ννRH + νRhν̃ + hνν̃R) + g4,2

√
2(ν̃∗W̃ν + H∗W̃h) +

+
1

2
B̃4ν̃Rν̃R +

1

2
(M4,IR + M4,UV )νRνR +

1

2
mW̃ W̃W̃ + h.c. (3.1)

where B̃4 = B4M4 = kπFT M4,IR, and mW̃ ∝ FT . The conformal sector of the action

is invariant under an R-symmetry U(1)R and a Peccei-Quinn-type symmetry U(1)Q. In

analogy with what was discussed in ref. [16], under U(1)R and U(1)Q the fields have the

corresponding charges listed in table 1. Then if, for instance, we start with a single phase

in the gaugino mass mW̃ and assume that the other parameters are real, since the first line

of eq. (3.1) and the Majorana masses for νR are invariant under the R-symmetry, we can

rotate away the phase in the gaugino mass parameter by doing a U(1)R transformation,
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Field R-Charge PQ-Charge

H 0 -2

h -1 -2

ν̃ 1 0

ν 0 0

ν̃R 1 2

νR 0 2

W̃ 1 0

Table 1: R-Charges

while generating a phase on B̃4. We can also remove the phase in B̃4 by means of a U(1)Q
superfield rotation of the right handed neutrino and the Higgs, but we generate a phase in

the total Majorana mass M4 = M4,IR + M4,UV . So we see that there is no possible way to

eliminate this CP-violating phase, which is therefore physical. In general, we can identify

this phase with

φ = arg
(

M4 mW̃ B̃∗
4

)

. (3.2)

Using the fact that B4 ∝ mW̃ M4,IR, one can easily see that φ = arg(M4M
∗
4,IR). We will

work in a basis in which the total Majorana mass M4 and the bilinear mass term B̃4 are

real (B4 real), and therefore φ may be identified with the CP-violating phase associated

with the gaugino mass term. From eq. (2.41) it follows that the phase φ is transferred to

the trilinear term A4 at the loop level. Following [2], in the limit |λ4|2A4/4π ¿ B4/2 the

lepton asymmetry is approximately given by

εL ' 4ΓB4

4B2
4 + Γ2

ImA4

M4
∆BF (3.3)

∆BF =
cB − cF

cF + cB
(3.4)

where cB and cF represent the fermionic and bosonic decay channel rates with final states

f = hν and f = Hν̃ respectively, and ∆BF ≈ 0.8 for T = 1.2M4.

Here an important point must be raised. What we measure from experiments is the

ratio
nB

nγ
≈ 7

nB

s
≈ 6 × 10−10 (3.5)

where nB is the baryon number density, nγ the photon number density and s is the entropy

density (for a more detailed discussion see section 3.2). After production, and after the

action of weak sphaleron effects, the total baryon asymmetry is fixed and therefore the

baryon to entropy ratio remain constant. In that sense, the present measurement of nB/s

reflects the primordially generated value.

As shown in [4], we can write the baryon to entropy ratio as

nB

s
= −

(

24 + 4nH

66 + 13nH

)

Y eq
ν̃R

ξ

[

4Γ|B4|
4|B4|2 + Γ2

] |A4|
M4

sin(φ) (3.6)
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where the first factor takes into account the reprocessing of the B-L asymmetry by sphaleron

transitions, nH is the number of Higgs doublets which is equal to 2, Y eq
ν̃R

= 45ζ(3)/(π4g∗)

where g∗ is the number of thermalized degrees of freedom, ξ is an efficiency parameter

that slightly depends on the production mechanism for the right handed neutrinos and φ

is the CP violating phase defined above (sin(φ) ' 1). Assuming thermal production, ξ is

suppressed for small and large mν because of insufficient νR production and strong washout

effect, respectively. The maximum value is O(0.1) for mν ' 10−(3−4) eV.

Now, as seen from eq. (3.6), during the radiation dominated era the entropy density s

is given by

s ∼ g∗T
3 (3.7)

So we see from here that the towers of KK modes, if thermalized, will contribute to g∗. Since

the mechanism of leptogenesis depends on the decay of the chiral right-handed (s)neutrino

zero mode, the presence of the KK towers will not induce an extra contribution to the lepton

asymmetry. Therefore, the effect of the KK modes will be in general to dilute the leptonic

asymmetry. Such a dilution, if large, would make it difficult to obtain the experimentally

observed baryon asymmetry. Therefore, for simplicity, we shall assume ke−kπR >
∼ M4 and

therefore only the zero mode will be in thermal equilibrium at temperatures of the order of

the Majorana neutrino mass, T ∼ M4. Values of kR ∼ 10 satisfying ke−kπR ' M4, are also

consistent with the ones necessary to stabilize the vacuum expectation value of T (x) [17],

and therefore from now on we shall assume that the latter is satisfied.

Under the above conditions, the light neutrino properties will be governed by the right-

handed neutrino mass. Namely, through the implementation of the see-saw mechanism in

warped extra dimensions [18], the left handed neutrino mass is given by

mν ∼ v2|λ4|2
M4

(3.8)

where v = 〈H(x)〉 ' 174 GeV is the expectation value of Higgs field, and we are assuming

tan β À 1.

To satisfy the out of equilibrium condition in the decay of the right handed sneutrino,

we should have a decay rate, Γ = M4|λ4|2/4π that is not much faster than the expansion

rate of the universe H. Since at T ' M4 only the zero modes are in thermal equilibrium, we

can essentially use four dimensional cosmology, ignoring the extra dimensional contribu-

tions of the gauge and neutrino fields propagating in the bulk. Therefore, we shall use the

conventional four dimensional expression H = 1.66g
1/2
∗ T 2/MP at the time when T ∼ M4

(MP = 4.2 × 1018 GeV and g∗ counts the number of degrees of freedom (d.o.f) in thermal

equilibrium).

We can improve the above approximation by writing an expression for the number of

thermalized degrees of freedom as g∗ = NKK × g∗,1 + g∗,2, where NKK counts the number

of excited KK levels that are in thermal equilibrium.

The masses of the first KK excited levels of a vector superfield (the major contribution

to the KK states comes from the gauge modes), in the limit KR À 1 and mn ¿ k, are

given by

mn,V ' (n − 1

4
)πke−kπR (3.9)
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where n = 1, 2, . . . is the KK level.

In the UV brane, there are 45 chiral superfields (quarks and leptons), 2 Higgs doublets

which include 4 chiral superfields. Therefore, there are 49 chiral superfields, each one

containing 4 physical degrees of freedom (2 fermionic and 2 bosonic). The total number of

effective degrees of freedom adds to g∗ = 98× (1+ 7/8) ' 184. The zero mode fields of the

right handed neutrino and gauge superfields contribute in the following way. There are 12

gauge fields (8 from QCD and 4 from electroweak), each one having two polarizations since

they are massless. Therefore, the gauge superfields zero-modes contribute 12×2×15/8 = 45

effective degrees of freedom, where the last factor of 15/8 comes from SUSY. The right

handed neutrino zero modes superfields belong to 3 families and they are Weyl fermions

(2 degrees of freedom). Thus, they contribute as 3× 2× 15/8 ' 11 degrees of freedom. So

we conclude that g∗,2 = 240.

In the case of the KK towers we have to remember that fields then are part of N = 2

SUSY. Therefore each tower (counting gauge and three right-handed neutrino superfields

which are the only ones that contribute to them) will add 60 × 15/8 ' 112 degrees of

freedom and thus g∗,1 = 112. To calculate NKK we go through the following derivation.

The entropy density s is given by the expression

s =
ρ + p

T
(3.10)

Now ρ and p can be written as

ρ =
g

2π2

∫ ∞

m

(E2 − m2)1/2

e(E−µ)/T − 1
E2dE (3.11)

p =
g

6π2

∫ ∞

m

(E2 − m2)3/2

e(E−µ)/T − 1
dE (3.12)

where we are doing the calculations for bosons. 1 We will assume that T À µ. In the

relativistic limit, T À m, ρ = (π2/30)gT 4 and p = ρ/3. We define NKK|n as

NKK|n =
s|n,non−rel

s|n,rel
(3.13)

for each KK level parameterized by n in eq. (3.9), s|n,rel = g(2π2/45)T 3 is the entropy

contribution in the relativistic limit, and we use the full expressions, eqs. (3.11)–(3.12) to

calculate the non-relativistic entropy contribution, s|non−rel. Therefore NKK is given by

NKK =
+∞
∑

n=1

NKK|n (3.14)

For values of m À T , the effective number of degrees of freedom associated with a given

specie is suppressed by a factor (m/T )3/2 exp(−m/T ).

Using the above expression for the KK mode masses, with m1,V ' 2.3ke−kπR, we

can easily perform the sum. It is straightforward to prove that, provided T < 2.3ke−kπR

1The results are basically the same for fermions
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the value of NKK will remain lower than one, leading to only a small modification of

the effective number of degrees of freedom at the freezing temperature. We shall require

that this relation is fulfilled, in order to avoid a dilution of the baryon asymmetry. In

addition, since the freezing temperature T ' M4, the above relation ensures that the

zero right-handed neutrino mode will have only small mixing with the heavier KK modes,

increasing the validity the approximations used in this work to generate the Majorana mass

contribution to the right-handed neutrino zero mode.

The out of equilibrium condition then reads,

M4/|λ4|2 &
MP

4π × 1.66 × (1.2)2
√

g∗
GeV (3.15)

On the other hand, the sneutrino decay should occur before the electroweak phase tran-

sition, when sphalerons, responsible for the conversion of lepton asymmetry into baryon

asymmetry are still active, Γ > H(T ∼ 100GeV)

M4|λ4|2 & 3 × 10−13GeV (3.16)

3.1 Analytical estimates

Taking into account the above constraints, we can obtain information about the funda-

mental parameters of the theory from an analytical point of view. Assuming that the right

handed neutrino is located away from the infrared brane,

e1/2+cνR À 1 (3.17)

and that the five dimensional Yukawa coupling λ5 ' a/
√

k, with a a number of order one,

we obtain,

λ4 = a
√

1 + 2cνR
e−(1/2+cνR

)kπR (3.18)

M4,UV =
λ2

4

a2
kRM1 ' M4 (3.19)

We can now see that the out of equilibrium condition, eq. (3.15), sets the scale for M1

M4/λ
2
4 ' kRM1

a2
. (3.20)

Hence, as emphasized in the introduction, this condition is naturally satisfied for values of

M1 ∼ 1014 − 1015 GeV close to the GUT scale. At the same time, the same parameter M1

sets the scale of the neutrino mass parameter. Indeed, since

M4/λ
2
4 =

v2

mν
(3.21)

and therefore, for the above values of M1, the neutrino mass parameter acquires phe-

nomenologically acceptable values mν ∼ 10−3 eV.

In order to determine the value of the remaining parameters, we should take into

account the conditions necessary for the realization of the soft leptogenesis scenario. As
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it is clear from eq. (3.4), these depend on the specific values of the bilinear and trilinear

parameters derived before, as well as the decay width. The relevant parameters are given by

M4,IR ' λ2
4

a2
kRM2e

2cνR
kπR (3.22)

B4 = 2kηe−kπR M4,IR

M4,UV

= 2kηe(2cν
R
−1)kπR M2

M1
(3.23)

mW̃ ' ηk

πkR
e−kπR (3.24)

Γ =
M4,UV λ2

4

4π

=
M1kRa2(1 + 2cνR

)2e−(2+4cνR
)kπR

4π
(3.25)

The primordial lepton asymmetry is maximized when the decay width is of the order of

B4. Requiring the parameters to be close to the resonance condition for εL (Γ = 2B4) we

obtain the following relationship

M2k

M2
1 a2

=
kR

16πη
(1 + 2cνR

)2e−(1+6cνR
)kπR (3.26)

Furthermore, now asking that at the specific temperature of soft leptogenesis there are

very few KK excited states, T ∼ M4 ∼ ke−kπR, implies

k

M1
∼ (1 + 2cνR

)kRe−2cνR
kπR (3.27)

Combining eq. (3.26) with eq. (3.27) we arrive at the following relation

M2 ∼ ka2

16πηkR
e−(1+2cν

R
)kπR (3.28)

A further constraint we need to impose on the model is that the mass of the NLSP which

is the stau τ̃1, as is the case in [12], be in accordance with experimental constraints. We

use the RGE at one loop [19],

dm2
τ̃1

dt
= . . . +

1

8π2

(

−12

5
g2
4,1m

2
B̃

)

+ . . . (3.29)

where g4,1 is the U(1)Y 4D hypercharge, mB̃ is the bino mass, t = ke−kπR/mτ̃ , and we only

included the relevant term. To avoid experimental constraints, mτ̃1
>
∼ 100 GeV or bigger,

we need to have a gaugino mass mλ1

>
∼ 500 GeV.

Taking the compactification scale ke−kπR ∼ M4 but at the same time having a gaugino

mass of O(500) GeV and furthermore having a small gravitino mass (m3/2 < 16 eV from

cosmological constraints, see next section) fixes the values of kR and η. With this require-

ments, we find that the value of the trilinear term A4 ' O(60) GeV. Now, in the case of

resonance, Γ ' 2|B4|, this implies a maximum value for M4 since εL ' A4/M4 ' 10−6.
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But from eq. (3.21) and the discussion about the efficiency parameter ξ following eq. (3.6),

we see that by fixing mν ' 10−(3−4)eV we completely determine the value of λ4. Thus in

turn, from eq. (3.20), draws us to fully fix the ratio M1/a
2. Since a ' O(1), we see that

M1 ' O(10(14−15))GeV, of the order of the unification scale, as stated in the introduction

and previously on this section. Rewriting eq. (3.28) as

M2 =
kλ2

4

16πηkR(1 + 2cνR
)

(3.30)

we see that M2 is also almost fully fixed by the choice of mν except for a mild dependence

on 1/(1 + 2cνR
). Thus, we have shown that given the conditions described above, all

parameters are fixed by choosing values for mν and the parameter a.

3.2 Numerical results

The numerical ratio of the baryon density to the entropy density may be obtained experi-

mentally by two methods. Firstly, by the requirement of consistency between the observed

and the predicted abundance of primordial elements by the Standard Big-Bang Nucleosyn-

thesis model [20]. This leads to a value of the baryon to photon ratio [21],

4.5 × 10−10 <
∼

nB

nγ

<
∼ 6.5 × 10−10. (3.31)

The second method is related to the baryon energy density determination by the WMAP

experiment [22],

Ωbh
2 = (2.233 ± 0.072)10−2 . (3.32)

Considering the relation between the entropy and the photon density, s ' 7nγ
2, the

Big-Bang Nucleosynthesis results translate into a value of

6.5 × 10−11 <
∼ nB/s <

∼ 9.5 × 10−11, (3.33)

with a narrower band of values, around 9× 10−11 being selected if only the WMAP values

are considered. The WMAP result, eq. (3.32), may be slightly modified (up to values of

Ωbh
2 ' 0.019) by assuming different shapes of the power spectrum [21, 23]. We shall require

that the baryon number to entropy density ratio that we compute is within the broader

range given above, (3.33). However, values within the WMAP allowed band, eq. (3.32),

may always be obtained by appropriate tuning of the parameters of the model.

In tables 2 and 3 we give the results from numerical computations for two different

acceptable points in parameter space. The input parameters are listed on the left column

and the output on the right column.

From the tables we see that, as emphasized before, M4 = M4,UV + M4,IR ≈ M4,UV .

We also notice that as we lower M4 we don’t need to be so close to the resonance condition

which, as said before, is fulfilled when Γ = 2|B4|. Moreover, M4/λ
2
4 satisfies the out of

2Although the addition of the gravitino increases the total entropy density, this increase is very small

due to the large dilution factor associated with the gravitino decoupling temperature, TD > 1 GeV .
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Input 1 Output 1

cνR
= −0.12 λ4 = 1.98 × 10−5

kR = 8 ke−kπR = 1.216 × 107 GeV

M1 = 3 × 1014 GeV M4,UV = 9.23 × 106 GeV

M2 = 1 × 1010 GeV M4,IR = 0.73 GeV

k = 1 × 1018 GeV mλ1
= 484 GeV

λ = 0.32/
√

k A4 = 70.11 GeV

η = 10−3 mν = 1.29 × 10−3 eV

B4 = 0.0019 GeV

Γ4 = 0.00029 GeV

εL = 1.12 × 10−6

m3/2 ≈ 20 eV

M4/λ
2
4 = 2.44 × 1016 GeV

NKK = 0.55

nB/s ' 7.2 × 10−11

Table 2: Results

Input 2 Output 2

cνR
= −0.105 λ4 = 1.54 × 10−5

kR = 8.42 ke−kπR = 9.75 × 106 GeV

M1 = 1.1 × 1015 GeV M4,UV = 6.148 × 106 GeV

M2 = 1010 GeV M4,IR = 0.21 GeV

k = 3 × 1018 GeV mλ1
= 479 GeV

λ = 0.6/
√

k A4 = 66 GeV

η = 1.3 × 10−3 mν = 1.176 × 10−3 eV

B4 = 0.00089 GeV

Γ4 = 0.00011 GeV

εL = 1.42 × 10−6

m3/2 ≈ 17 eV

M4/λ
2
4 = 3.0825 × 1016 GeV

NKK = 0.40

nB/s ' 9.61 × 10−11

Table 3: Results

equilibrium condition, eq. (3.15). All necessary conditions for soft leptogenesis are satisfied

and we get a left-handed neutrino mass which is of the order of the one associated with

the values of the eigenstate mass differences implied by solar neutrino experiments.

To calculate the gravitino mass we used the approximate formula

m3/2 ≈ ηk2e−2kπR

√
3MP

(3.34)

and we have required that the gravitino mass obtained from this expression is lower than

about 20 eV, to be consistent with astrophysical and cosmological bounds (see below).
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Input 3 Output 3

cνR
= −0.105 λ4 = 2.138 × 10−5

kR = 7.6 ke−kπR = 8.546 × 106 GeV

M1 = 3.3 × 1014 GeV M4,UV = 1.27 × 107 GeV

M2 = 3 × 109 GeV M4,IR = 0.77 GeV

k = 2 × 1017 GeV mλ1
= 537 GeV

λ = 0.3/
√

k A4 = 74.4 GeV

η = 1.5 × 10−3 mν = 1.086 × 10−3 eV

B4 = 0.0015 GeV

Γ4 = 0.00046 GeV

εL = 1.71 × 10−6

m3/2 ≈ 15 eV

M4/λ
2
4 = 2.786 × 1016 GeV

NKK = 1.38

nB/s ' 8.35 × 10−11

Table 4: Results

In tables 2, 3, we have chosen a value of k ' 1018 GeV, of the order of the fundamental

Planck scale. As the value of k is lowered, we see that NKK
>
∼ 1 and M2

<
∼ 1010 GeV. We

provide an example, with values of k ' 2 × 1017 GeV in table 4.

In models of low energy supersymmetry breaking, like the one under consideration, the

gravitino is the lightest SUSY particle and thus it is stable. Therefore gravitinos generated

at high temperature contribute to the matter density of the universe. For masses m3/2 .

100 eV the goldstino component of the gravitino has large interaction with the MSSM

particles, and therefore the gravitino can thermalize at high temperature. The number

density in this case is just the equilibrium value and, taking into account the diluting

effect of the decoupling of heavy particles, the energy density is approximately given by

Ω3/2h
2 ∼ 0.1(m3/2/100 eV ), satisfying cosmological bounds. Since these gravitinos are

warm, from Lyman-α forest and WMAP data in order for them not to smear out the density

perturbations on the matter power spectrum at small scales their masses are excluded from

the region 16 eV. m3/2 . 100 eV. The gravitino mass in our scenario falls naturally in the

1–100 eV range, and satisfies these constraints for a broad range of parameters, as shown

by the specific examples above.

In the above, we have considered a model of gaugino mediation in warped extra di-

mensions, in which the matter fields are localized on the UV brane, while the dominant

supersymmetry breaking contribution is localized on the IR brane. A question arises about

the possible origin of the supersymmetry Higgsino mass term µ within such scenario. Since

the value of the gravitino mass is much lower than in supergravity mediated scenarios, the

Giudice-Masiero mechanism [24] won’t provide a sufficiently large mass. A logical possibil-

ity is the addition of a singlet in the spectrum, which couples to the Higgs superfields and

induces a µ-term by acquiring a v.e.v. If this singlet is localized, it will acquire a negative

supersymmetry breaking squared mass term by radiative corrections. Since supersymmetry

– 17 –



J
H
E
P
1
2
(
2
0
0
6
)
0
3
7

is mediated by gaugino interactions, this is a higher-loop effect, and numerically the mass

values are too small to lead to a phenomenologically acceptable µ parameter, for natural

values of the Higgs and singlet couplings. However, as has been previously done in similar

low energy supersymmetry breaking models [25], one can make use of supergravity induced

tadpole contributions and the compensator field (2.8), whose F-term is Fφ ' m3/2, to lead

to an acceptable value of µ. As an alternative to the localized singlet field, one can also

consider the case of a singlet field propagating in the bulk of the warp extra dimension.

Although in this case the result depends on the precise localization of the singlet zero mode

in the bulk, an acceptable µ-term may be obtained for reasonable values of the bulk mass

parameters.

4. Conclusions

In this article, we have studied the possibility of realizing the mechanism of soft leptogenesis

within the context of warped extra dimensions. We have assumed that all the quark

and lepton fields are localized on the UV brane, while the gauge fields and the right-

handed neutrinos propagate into the extra dimension. Assuming the presence of localized

Majorana mass terms on the UV and IR branes, we have shown that the condition of out

of equilibrium may be naturally fulfilled by assuming that the UV Majorana mass term is

of the order of the GUT scale. Furthermore, for the same conditions, the neutrino mass

acquires phenomenologically acceptable values, and of the order of the ones necessary to

maximize the baryon asymmetry result.

Soft supersymmetry breaking parameters for the gauginos and for the right-handed

sneutrinos are generated by the auxiliary component of the radion field, which acquires

a non-vanishing vacuum expectation value localized on the IR brane. Loop effects are

responsible for the generation of supersymmetry breaking parameters for the rest of the

quark, lepton and Higgs superfields. Although the right-handed stau becomes the lightest

standard model superpartner, the lightest superparticle is given by the gravitino which

becomes naturally light within this framework. Then, the collider phenomenology becomes

similar to the one of gauge-mediated models with a light stau NLSP [26].

We have shown that, provided a relative phase exist between the two localized Ma-

jorana masses, the physical CP-violating phase necessary for the realization of soft lep-

togenesis is generated. An effective Majorana mass M4 smaller than about 108 GeV, as

necessary for the realization of this scenario, is naturally generated by a proper localiza-

tion of the right-handed neutrino zero modes. Moreover, this localization is also effective

in avoiding the dilution of the baryon asymmetry by the entropy generated by the KK

towers provided the Majorana mass is smaller than the local curvature term in the IR

brane, M4
<
∼ k exp(−kπR). Finally, the condition that the gaugino masses are at the TeV

scale fixes the size of FT . The resulting gravitino mass is of the order of a few eV, which

satisfy the relic density and long range structure constraints dictated by cosmology.

A proper baryon asymmetry may be generated under the above conditions, provided

the effective bilinear term B4 is of the order of the sneutrino decay width. Due to the

smallness of the Yukawa couplings, this implies a value of B4 smaller than about 100 MeV.
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In our model the value of B4 is determined by the ratio of the localized Majorana mass

term, and successful leptogenesis is achieved for values of the localized UV and IR mass

terms M1 ' 1015 GeV and M2 ' 1010 GeV, respectively.
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